By Eric Davis | www.LittleStreamSoftware.com

TABLE OF CONTENTS

Introduction

1.BadTests

2. Complexity inside code

ooooooooooooooooooooooo

3. Over-engineering (project-wide complexity)

4. Documentation

5. Being different

Solutions
BadTests

Complexity inside code

11

14

17

20

20

21

TABLE OF CONTENTS

Over-engineering
Documentation

Being different

You can solve any problem

......................

21

22

23

25

INTRODUCTION

INTRODUCTION

Over the years I’ve reviewed dozens of Ruby and Ruby on Rails
applications. After a while doing anything like this, you start
to see the same problems creep up over and over again. In this
document I’ll explain five of the most common and risk-causing

problems in Rails projects so you can watch out for them in your

own projects.

1. BAD TESTS

1. BAD TESTS

The most common problem I’ve seen is bad tests. These might
be poorly written tests, brittle tests, or even an outright lack of
tests. Just about everybody apologizes for their tests like they

have a guilty conscience.

The sad thing is, Rails comes with some amazing support for
testing built right in. In a client project I did in Cake PHP (a
Rails-like PHP framework), it took me dozens of hours to setup
the infrastructure to support testing that is standard with Rails.
Rails gives developers the ability and power to test the applica-

tion, so it makes sense to use this power.

Regarding missing tests specifically, adding them to an existing
project easily takes twice or more work. Sometimes due to how
the code was written, it’s not worth even trying to go and back-
fill old tests. On the other hand, adding tests while code is

written takes much less time and may even make development

with tests faster than the development alone.

2. COMPLEXITY INSIDE CODE

2. COMPLEXITY INSIDE CODE

Complexity kills projects, but not in a direct way. The symptoms

it causes can be the death-knell for a project:

> slowing development
> hard or impossible to reproduce bugs

> wild estimates off by 2x, 3x and maybe even 10x

Code complexity is pretty easy to comprehend. It’s a concept
that explains how difficult a piece of code is to understand. Ad-
dition is simple, a 900 line method with 42 conditionals and 15

return statements is hard (even if you are a developer).

Since complexity is a concept, it’s also very easy to measure.
Expert developers can even judge complexity just by glancing at

some code. This means that reducing complexity is an activity

that can be planned and performed very easily.

3. OVER-ENGINEERING (PROJECT-WIDE
COMPLEXITY)

3. OVER-ENGINEERING (PROJECT-WIDE ...

Taking a wider view than code complexity, project complexity is

another common problem.

By calling it another name, however, we can get a much better

emotional response: over-engineering.

Over-engineering basically means designing and building a
Rails application that provides a solution in a too-complex

fashion.

If it’s raining outside, it’s much easier to put on a hat than , ,

to invent a weather control machine.

Every developer wants to avoid over-engineering, but many
don’t succeed. Over-engineering can be difficult to spot,
especially by the developers who are actively working on a

project. It’s much, much easier for an outside developer or

3. OVER-ENGINEERING (PROJECT-WIDE ...

consultant to spot it. That said, active developers can learn to

spot over-engineering with training and practice.

The big downsides to over-engineering are straightforward:

> Development cost more

> Development took longer

> Additional technology risks

The main problem is that more was built and sometimes to sup-

port that more, riskier pieces of technology have be used.

4. DOCUMENTATION

4. DOCUMENTATION

Documentation, or the lack of it, is another common problem

with Rails projects.

There are usually two extremes:

1. No documentation at all

2. Excessive and/or outdated documentation

The first extreme, no documentation, is usually a sign of a team
that is moving too fast or aren’t looking back enough (e.g re-

viewing).

The second extreme is usually a sign of a team that is forced,
coerced, or threatened to create documentation - or they are

fearful of what could happen in the future.

Whatever the case, problems with documentation affect the

team both in the present and in the future.

4. DOCUMENTATION

In the present they might not understand parts of the applica-
tion and will make incorrect assumptions about how parts of it
work. This leads to bugs, integration problems and communica-

tion issues.

Later on, documentation has an even greater cost. Without
documentation, assumptions tend to be larger and I’ve even
seen this leading to arguments (e.g. one developer argues it

works one way versus another).

Documentation also affects any new team member. They either
need to be training 1-on-1 (lack of documentation) which has
a huge productivity hit to the project, or they learn the wrong

things and waste time wading through the documentation (ex-

cessive/outdated documentation).

5. BEING DIFFERENT

5. BEING DIFFERENT

The fifth problem that occurs in Rails projects is trying to be
too different. This encompasses other problems, including ones

that aren’t listed here.

What being different means is that the Rails application or team
is trying to do things differently than everyone else for some

reasomn.

In moderation and for specific, focused areas, this is actually
a benefit. When dealing with your application’s competitive

advantage in the marketplace, being different is warranted.

Unfocused difference, especially in non-visible or non-core ar-

eas, is actually harmful.

One huge benefit of Rails is that the framework makes many de-
cisions for you so you don’t have to make them. This convention

also makes it easier for other developers to understand how the

application works.

5. BEING DIFFERENT

But being different changes this. Instead of the regular “it
works this way”, it’s now “it works this other way because...”.

That “because” can kill the project.

One of the worst ways I’ve seen this was when a team changed
so much in Rails that they practically re-wrote Rails itself in
their application. At that point they would have been better off
not using Rails or admitting that they were addicted to being

different.

Be different only where it really matters

SOLUTIONS

SOLUTIONS

You’ve read about the problems and might have even recognized
a few in your own Rails project. I’m going to take time now to

propose some solutions.

Every problem has many different possible solutions, your case
included. Think of these as recommendations or ideas to get you

started.

Bad Tests

The best solution to bad tests is to:

1. perform a test audit
2. decide on the top three problems, and then

3. work on them

This might entail adding more tests, deleting old tests, rewriting

confusing tests, or some combination of these.

SOLUTIONS

Complexity inside code

Focus on the most valuable and highest-level tests first.

Complexity inside code

Fixing complexity inside of the code is a simple process. There
are tools and services such as my Healthy Rails service that can
be used to review the code and flag complex areas. Combine
that with strong code reviews and you can fix highest complexity

before it becomes a problem.

Over-engineering

To prevent over-engineering all you need to do is to ask the

question:

http://www.littlestreamsoftware.com/contact/

SOLUTIONS

Documentation

Is there a simpler way we can do this for now?

Once over-engineering has taken hold, it can be more difficult
to remove. Depending on the depth of the problem, it might re-
quire replacing components, rewriting entire sections, or even

starting something from scratch.

Sometimes you can’t remove over—engineering at all. When
that happens, just try to prevent any more over-engineering

and keep that section isolated from the rest of your application.

Documentation

Depending on the problem with your documentation you’ll ei-

ther need to write more or write less. Treat documentation like

code that has to be maintained, and perform regular documen-

SOLUTIONS

Being different

tation reviews to delete old documentation and update outdated

docs.

Being different

Being different is a hard problem to solve because you don’t
want to stifle creatively at the same time. Questioning decisions

and trying to make the distinction between “perfect” and “good

enough” has worked well.

YOU CAN SOLVE ANY PROBLEM

YOU CAN SOLVE ANY PROBLEM

I’d like to leave you with one final idea.

No matter the problem, you have the power to solve it , ,

Software is very malleable and with the right resources, attitude,
knowledge, and people you can solve any problem with it. If
you are getting stuck, you might be missing one of those com-

ponents.

Don’t be afraid to ask for help either. Getting help for one week

might unstick you enough to save you months of work.

For a more comprehensive review of your Ruby on Rails applica-

tion, Healthy Rails can guide you and give you the assurance you

need to find and fix problems before they grow out-of-control.

http://www.littlestreamsoftware.com/contact/

	Introduction
	1. Bad Tests
	2. Complexity inside code
	3. Over-engineering (project-wide complexity)
	4. Documentation
	5. Being different
	Solutions
	Bad Tests
	Complexity inside code
	Over-engineering
	Documentation
	Being different

	You can solve any problem

